全部評論(2條)
-
- xgcok899 2011-08-30 00:00:00
- 高光譜遙感是高光譜的一種具體應(yīng)用,高光譜利用的是光譜技術(shù)在光譜維獲取觀察對象的理化性質(zhì),高光譜遙感除了利用光譜技術(shù)還利用了成像技術(shù)將觀察對象在空間維和光譜維呈現(xiàn)出來。高光譜遙感是目前研究的熱門方向。
-
贊(12)
回復(fù)(0)
-
- 劉永秀nyqnr 2016-12-01 16:07:34
- 遙感從光譜上來分,可分為多光譜遙感和高光譜遙感。 多光譜即我們平常接觸Z多的遙感影像,如Google地圖或Google Earth上的衛(wèi)星影像就是多光譜的影像,一般多數(shù)個(gè)一直數(shù)十個(gè)波段組成,且這些波段大多處于波段區(qū)分少的可見光區(qū)域; 高光譜,即hyperspectral 遙感,主要指光譜分辨率高(<10nm),從而波段數(shù)量超多,所包含的光譜信息十分豐富,乃至海量;高光譜是從軍事逐漸應(yīng)用到工業(yè),農(nóng)業(yè)等領(lǐng)域。如:高光譜檢測某機(jī)器是否有缺陷,裂紋等。高光譜無損檢測農(nóng)產(chǎn)品的品質(zhì),他包括外部品質(zhì)(大小,顏色,形狀等)和內(nèi)部品質(zhì)(糖度,酸度),也可以檢測產(chǎn)品的污染,病蟲害,以及醫(yī)學(xué)當(dāng)中的一些疾病應(yīng)用等。 希望對你有用!
-
贊(6)
回復(fù)(0)
登錄
熱門問答
- 高光譜和高光譜遙感之間的區(qū)別
- 高光譜遙感
- 概念 特點(diǎn) 應(yīng)用 主要是這三個(gè)方面的內(nèi)容,要求內(nèi)容詳盡,不然沒分可拿!!另外時(shí)間Z好在后天之前.
- 高光譜遙感和多光譜遙感的差異
- 高光譜遙感的優(yōu)點(diǎn)
- 高光譜遙感和多光譜遙感有什么區(qū)別?
- 高光譜遙感圖像和普通數(shù)碼照片的區(qū)別是什么?
- 我是剛開始研究高光譜遙感的研究生,我對它的理解是,普通彩色數(shù)碼照片只有三個(gè)波段,即紅綠藍(lán)三個(gè)可見波段成像的疊加,可以表示成一個(gè)m*n*3的矩陣,m*n為像素?cái)?shù),黑白照片則為一個(gè)波段的灰度圖像,而高光譜遙感是很多波段(包括不可見波段)數(shù)據(jù)的集合,可以... 我是剛開始研究高光譜遙感的研究生,我對它的理解是,普通彩色數(shù)碼照片只有三個(gè)波段,即紅綠藍(lán)三個(gè)可見波段成像的疊加,可以表示成一個(gè)m*n*3的矩陣,m*n為像素?cái)?shù),黑白照片則為一個(gè)波段的灰度圖像,而高光譜遙感是很多波段(包括不可見波段)數(shù)據(jù)的集合,可以表示為一個(gè)m*n*L的矩陣,L為波段數(shù),我們看到的遙感圖像都是一個(gè)波段的灰度圖像或幾個(gè)波段合成的彩色圖像,整個(gè)高光譜遙感圖像只能是立體的,這樣理解正確嗎? 展開
- 有哪位高手知道高光譜和遙感的區(qū)別?
- 高光譜分辨率遙感的介紹
- 高光譜遙感數(shù)據(jù)如何下載
- 高光譜遙感數(shù)據(jù)處理系列(一)高光譜數(shù)據(jù)讀取與可視化
高光譜遙感數(shù)據(jù)處理系列(一)
地表反射的太陽輻射包含著豐富的信息,從太陽外層大氣的吸收到地球大氣的吸收,經(jīng)過與地物的相互作用反射回大氣,最 終被傳感器捕獲。高光譜遙感可以在每個(gè)像元獲取高分辨率的光譜數(shù)據(jù),這些光譜信息提供了一種理解事物的新的維度。下圖展示了幾種典型地物的光譜。可以看出不同地物展現(xiàn)出顯著不同的光譜特征。除此之外,同種地物在不同狀態(tài)下,也可能在特定波段展現(xiàn)出顯著不同的光譜特征。通過比對光譜數(shù)據(jù),可以實(shí)現(xiàn)對地物區(qū)分,狀態(tài)區(qū)分,異常監(jiān)測等難以通過傳統(tǒng)遙感手段實(shí)現(xiàn)的應(yīng)用。高光譜遙感被廣泛應(yīng)用于農(nóng)林業(yè)、礦業(yè)、環(huán)境、保險(xiǎn)、等領(lǐng)域。
太陽輻射與典型地物反射率
通常彩色影像有紅綠藍(lán)三個(gè)波段,多光譜影像有幾到十幾個(gè)波段,而高光譜影像有著幾十到上百個(gè)波段。波段的增加除了提高了信息量,還使得數(shù)據(jù)量成比例增加。這種數(shù)據(jù)量對計(jì)算機(jī)的性能提出了較高的要求,更多的是要求對處理者新的思路和方法。在接下來的文章中,我們將詳細(xì)介紹高光譜數(shù)據(jù)的處理流程與方法,希望能在此過程中給讀者以新的思考。
Hyperspectral light sheet microscopy | Nature Communications
ENVI (The Environment for Visualizing Images) 是美國Exelis Visual Information Solutions 公司的旗艦產(chǎn)品。它是由遙感領(lǐng)域的科學(xué)家采用交互式數(shù)據(jù)語言IDL (Interactive Data Language) 開發(fā)的遙感圖像處理軟件。ENVI已經(jīng)廣泛應(yīng)用于科研、環(huán)境保護(hù)、氣象、石油礦產(chǎn)勘探、農(nóng)業(yè)、林業(yè)、醫(yī)學(xué)、國防&安全、地球科學(xué)、公用設(shè)施管理、遙感工程、水利、海洋、測繪勘察和城市與區(qū)域規(guī)劃等領(lǐng)域。
雙擊ENVI圖標(biāo)打開ENVI軟件,可以看到ENVI軟件的主界面由以下六個(gè)部分組成:①菜單欄、②工具欄、③圖層管理窗格、④圖像顯示部分、⑤工具箱、⑥狀態(tài)欄。
ENVI軟件的布局如圖所示,首先點(diǎn)擊 依次點(diǎn)擊①菜單欄->File->Open,在彈出的對話框中選取所需要的文件,
一般的ENVI文件由兩部分組成,文件本體和頭文件(.hdr)。文件本體記錄了文件的數(shù)據(jù)信息,而頭文件中記錄了關(guān)于這些數(shù)據(jù)信息的描述。使用記事本文件可以直接打開hdr文件,可以看到其中包括了:
操作記錄
Samples:柵格列數(shù)
Lines:柵格行數(shù)
Bands:波段數(shù)
Header offset:文件開頭到實(shí)際數(shù)據(jù)起始位置的偏移量
File type:文件類型
Data type:數(shù)據(jù)存儲類型,用數(shù)字表示bit位數(shù)
Interleave:存儲順序
Map Info:圖像采用的投影系統(tǒng)參數(shù),坐標(biāo)系統(tǒng)及單位
Coordinate System String:詳細(xì)的坐標(biāo)系統(tǒng)信息
Wavelength:每個(gè)波段所對應(yīng)的波長
兩個(gè)文件應(yīng)該放在同一目錄下面,ENVI在讀取時(shí)會自動進(jìn)行關(guān)聯(lián)。
任選其中一個(gè)文件都可以打開該文件,但是ENVI對兩個(gè)文件的處理方式有所不同。如果選擇.hdr文件,ENVI會直接載入顯示文件的第 一個(gè)波段,如下圖所示。使用鼠標(biāo)滾輪可以對圖像進(jìn)行縮放操作,使用②工具欄中的工具可以對圖像進(jìn)行拖動縮放等一系列操作。加載成功的圖像會顯示在③圖層管理區(qū),通過點(diǎn)擊圖像前面的勾選框來控制圖像在④圖像顯示區(qū)的顯示與否。
使用如果打開文件本體,ENVI會彈出Data Manager窗口
該窗口包含三個(gè)部分,分別是①波段信息、②文件信息、③RGB波段選取。①中展示了所有波段的名稱,②中是經(jīng)過處理后的頭文件信息,③是進(jìn)行RGB合成的波段選取,點(diǎn)擊三種顏色的方框后,在①中單擊選擇波段,選擇完成后點(diǎn)擊Load Data。如果只想要顯示一個(gè)波段的灰度影響可以在①中選中目標(biāo)波段后直接點(diǎn)擊Load Greyscale。
RGB 合成象素值的彩色圖,就是將三個(gè)波段的數(shù)據(jù)分別通過紅、綠、藍(lán)三個(gè)通道加載,然后進(jìn)行渲染。
將多波段影像數(shù)據(jù)添加到地圖中之后,可使用多波段柵格數(shù)據(jù)集中的任意三個(gè)可用波段的組合來創(chuàng)建 RGB 合成圖。與僅處理一個(gè)波段相比,通過將多個(gè)波段共同顯示為RGB 合成圖通常可從數(shù)據(jù)集收集到更多信息。
來源:簡書
通常我們選取650nm、550nm和450nm分別賦給RGB通道進(jìn)行合成以獲得最 佳的顯示效果。顯示效果如下圖:
在②工具欄中選擇按鈕,ENVI會在圖上顯示框標(biāo),并彈出光譜特征(Spectral Profile)窗口。光譜特征窗口中顯示了框標(biāo)中心白點(diǎn)所在像元的光譜曲線。如下圖所示:
點(diǎn)擊光譜特征窗口中的 ,可以對光譜曲線進(jìn)行一些操作,如平滑,計(jì)算NDVI,顯示RGB波段所在位置等:
小結(jié)
本文介紹了高光譜影像的基本原理以及簡單的讀取及可視化操作。使用ENVI軟件可以實(shí)現(xiàn)大部分簡單的高光譜數(shù)據(jù)處理。在接下來的教程中,我們將從植被指數(shù)提取、高光譜濾波、非監(jiān)督分類與監(jiān)督分類等方面介紹ENVI軟件的使用。除此以外,我們還將介紹基于Python的高光譜處理,從編程角度介紹高光譜相關(guān)知識,以及高光譜數(shù)據(jù)與大數(shù)據(jù)處理的結(jié)合。
參考:
【1】百度百科
【2】 www.jianshu.com/p/d0765ee89b86
- ?高光譜遙感數(shù)據(jù)處理系列(二)基于高光譜數(shù)據(jù)的植被指數(shù)計(jì)算
高光譜遙感數(shù)據(jù)處理系列(二)
反射率與植被指數(shù)
來自地物反射/發(fā)射的光通過鏡頭被相機(jī)捕獲,使得傳感器被曝光。由于光電效應(yīng),傳感器上的每個(gè)像素傳感器上的電荷開始累計(jì)。經(jīng)過相機(jī)芯片的轉(zhuǎn)換,這些光信號以數(shù)字的形式存儲下來,這些數(shù)字被稱為DN值。
輻射亮度 (Radiance),簡稱輻亮度 , 指面輻射源在單位立體角 、 單位時(shí)間內(nèi) , 在某一垂直于輻射方向單位面積 (法向面積) 上輻射出的輻射能量 , 即輻射源在單位投影面積上 、 單位立體角內(nèi)的輻射通量 。輻亮度是最常用的度量光強(qiáng)弱的物理量之一。輻亮度可以進(jìn)一步用于反射率的計(jì)算。
DN值可以看作由輻亮度與相機(jī)屬性主導(dǎo)的變量。去除DN值中由于相機(jī)屬性引起的變化,將其轉(zhuǎn)化為輻亮度的過程稱為輻射定標(biāo)。通常該過程由相機(jī)廠商進(jìn)行處理,或者廠商會提供用于定標(biāo)的關(guān)鍵參數(shù)。
物體反射的輻射能量占總輻射能量的百分比,稱為反射率。不同物體的反射率也不同,這主要取決于物體本身的性質(zhì)(表面狀況),以及入射電磁波的波長和入射角度,反射率的大小范圍總是小于等于1,利用反射率可以判斷物體的性質(zhì)。
在使用無人機(jī)進(jìn)行實(shí)際觀測時(shí),通常使用地物輻亮度除以白板或反射布所在像元的輻亮度作為反射率。
從空間量化植被覆蓋、生物化學(xué)、結(jié)構(gòu)和功能是研究和理解全 球變化、生物多樣性和農(nóng)業(yè)的關(guān)鍵。實(shí)際上,遙感在很大程度上依賴于使用源自光譜反射率的植被指數(shù) (Vegetation Indices, VI)。VI 是幾個(gè)波段反射率的數(shù)學(xué)變換,旨在最 大限度地提高對特定生物物理現(xiàn)象(例如,綠度、含水量或光合作用活動)的敏感性,同時(shí)最 大限度地降低對土壤特性、太陽光照、大氣條件和傳感器觀察等因素的敏感性。
典型植物的反射光譜。
植物光譜最顯著的特這就是紅光范圍的強(qiáng)吸收與近紅外區(qū)域的強(qiáng)反射,兩個(gè)波段之間的快速上升波段稱為紅邊。
紅光波段的強(qiáng)吸收是由于植被葉綠素的吸收,而近紅外波段的強(qiáng)反射是由于植被的葉片結(jié)構(gòu)導(dǎo)致的。
通過兩個(gè)波段進(jìn)行差分或比值可以凸顯出植被在這兩個(gè)波段的反射特性的差別。同時(shí),差分或比值運(yùn)算可以去除兩個(gè)波段中包含的背景信號及噪聲。
不同的波段或組合形式側(cè)重展現(xiàn)了不同的植被特性。植被指數(shù)是對地表植被狀況的簡單、有效和經(jīng)驗(yàn)的度量。目前已經(jīng)出現(xiàn)了上百種不同的植被指數(shù)。ENVI中包含了其中7類 27種植被指數(shù)。
主界面功能區(qū)
在主界面⑤工具箱中搜索欄中可以方便地對所有工具進(jìn)行檢索,輸入 Vegetaton Indices Parameters ,打開該工具如下所示:
鼠標(biāo)單擊所需要的植被指數(shù),然后點(diǎn)擊 Choose 選擇文件的存儲位置。此外ENVI還提供了將數(shù)據(jù)存儲到內(nèi)存的選項(xiàng) Memeory,但是這些數(shù)據(jù)在ENVI關(guān)閉后會被刪除。所以選擇存儲到內(nèi)存時(shí),ENVI會彈出二次確認(rèn)對話框,繼續(xù)選中Memeory確認(rèn)即可。
ENVI的幫助文件中詳細(xì)展示了各種植被指數(shù)的公式及參考文獻(xiàn)。在菜單欄 Help 中打開-> 在左側(cè) Contents 選項(xiàng)卡中的Vegetation Analysis。關(guān)于植被指數(shù)的發(fā)展和使用場景還可以參考 Xue J, Su B. Significant remote sensing vegetation indices: A review of developments and applications[J]. Journal of sensors, 2017.
在獲取植被指數(shù)后,可以利用這些指數(shù)進(jìn)行地表參數(shù)估算或者進(jìn)一步進(jìn)行實(shí)際應(yīng)用,ENVI中提供了幾種植被指數(shù)的實(shí)際應(yīng)用工具,包括林木健康分析(Forest Health Vegetation Analysis)、農(nóng)作物脅迫(Agricultural Stress Vegetation Analysis)、易燃性分布分析(Fire Fuel Vegetation analysis),以及植被抑 制(Vegetation Suppression)。
這些應(yīng)用工具結(jié)合幾類不同植被指數(shù)對植被進(jìn)行評估,以林木健康分析為例,首先在主界面⑤中搜索欄中輸入 Forest Health Vegetation Analysis ,雙擊打開林木健康分析工具:
該工具通過三類不同的植被指數(shù):綠度指數(shù),葉色素指數(shù),冠層水分或光能利用率指數(shù)。ENVI內(nèi)置了模型進(jìn)行閾值篩選,綜合分析多種指數(shù),將植被的健康狀況分為9種。
波段運(yùn)算
如果需要使用內(nèi)置植被指數(shù)以外的指數(shù)進(jìn)行運(yùn)算,可以使用ENVI中的Band Math工具。這里分別對窄波段和寬波段植被指數(shù)的計(jì)算進(jìn)行介紹。
窄波段歸一化植被指數(shù):
首先在主界面⑤中搜索欄中輸入 Band Math,雙擊打開波段運(yùn)算工具:
在Band Math中輸入所需要的表達(dá)式,這里需要注意的是,ENVI默認(rèn)用b1,b2...來表示不同的變量,比如這里我們用到了兩個(gè)波段680nm和800nm,分別用變量b1和b2來表示。在Enter an expression中輸入(b2-b1)/(b2+b1),點(diǎn)擊ok,會彈出變量與實(shí)際使用波段的匹配對話框。
首先在①中單擊選擇需要賦值的變量,接下來在②中選擇所對應(yīng)的波段(如果不同波段是分開存儲的,選擇Map Variable to Input File可以將整個(gè)文件賦給某個(gè)變量)。在有所變量選擇完畢后,點(diǎn)擊OK。結(jié)果如下圖所示:
寬波段NDVI:
通常機(jī)載成像光譜儀的光譜分辨率可以達(dá)到亞納米/納米級。而常用的衛(wèi)星數(shù)據(jù)如Landsat系列和MODIS產(chǎn)品的光譜分辨率較寬,針對這些衛(wèi)星遙感產(chǎn)品開發(fā)的植被指數(shù)基本都是寬波段植被指數(shù)。為了使用機(jī)載成像光譜儀進(jìn)行寬波段植被指數(shù)的計(jì)算需要先對波段進(jìn)行聚合,這里我們以Landsat系列的寬波段為例進(jìn)行手動寬波段NDVI計(jì)算(Vegetaton Indices Parameters中也提供了一些寬波段VI的計(jì)算,這里另外介紹手動波段聚合的操作方法)。
Landsat 9 的傳感器如下所示:
Band 1 Visible (0.43 - 0.45 μm) 30-m.
Band 2 Visible (0.450 - 0.51 μm) 30-m.
Band 3 Visible (0.53 - 0.59 μm) 30-m.
Band 4 Red (0.64 - 0.67 μm) 30-m.
Band 5 Near-Infrared (0.85 - 0.88 μm) 30-m.
在⑤工具箱中搜索欄中Sum Data Parameters,打開波段聚合工具。
在①中選擇輸入文件,然后點(diǎn)擊 Spectral Subset ,在彈出的波段選擇窗格中,對要進(jìn)行聚合的波段進(jìn)行選取(按住Shift進(jìn)行連續(xù)多選,按住Ctrl進(jìn)行多選)。
點(diǎn)擊OK進(jìn)行確認(rèn)。
Sum Data Parameters 提供了多種波段聚合函數(shù),這里選擇Mean函數(shù)進(jìn)行聚合。依次對幾個(gè)波段進(jìn)行聚合后的,我們得到以下文件。
接下來可以用Band Math進(jìn)行寬波段NDVI的計(jì)算,計(jì)算方法同上。
小結(jié)
自遙感領(lǐng)域出現(xiàn)以來,植被指數(shù)扮演著重要的角色,并且一直在發(fā)展完善。本文介紹了反射率和植被指數(shù)的概念,植被指數(shù)的原理,使用ENVI進(jìn)行植被指數(shù)計(jì)算,以及手動窄/寬波段植被指數(shù)的計(jì)算。了解其背后的植物生理學(xué)知識,是正確使用這些指數(shù)的必要條件。
- 什么是高光譜衛(wèi)星遙感數(shù)據(jù)
- 高光譜遙感專業(yè)研究生畢業(yè)前景?
- 高光譜遙感研究生去哪里工作
- 在哪可以下載高光譜遙感影像
- 高光譜成像遙感技術(shù)研究的檢索詞
- 高級高光譜分類與常見高光譜分類的區(qū)別
- 為什么用高光譜遙感數(shù)據(jù)進(jìn)行分類
- 高光譜遙感圖像紋理特征包括什么
- 請問哪里能買到高光譜遙感影像
- Z好是Hyperion
5月突出貢獻(xiàn)榜
推薦主頁
最新話題
-
- #DeepSeek如何看待儀器#
- 干體爐技術(shù)發(fā)展與應(yīng)用研究
- 從-70℃到150℃:一臺試驗(yàn)箱如何終結(jié)智能...從-70℃到150℃:一臺試驗(yàn)箱如何終結(jié)智能調(diào)光膜失效風(fēng)險(xiǎn)?解決方案:SMC-210PF-FPC溫濕度折彎試驗(yàn)箱的五大核心價(jià)值1. 多維度環(huán)境模擬,覆蓋全生命周期測試需求超寬溫域:支持-70℃至+150℃的極限溫度模擬(可選配),復(fù)現(xiàn)材料在極寒、高溫、冷熱沖擊下的性能表現(xiàn);控濕:濕度范圍20%~98%RH(精度±3%RH),模擬熱帶雨林、沙漠干燥等復(fù)雜工況,暴露材料吸濕膨脹、分層缺陷;動態(tài)折彎:0°~180°連續(xù)可調(diào)折彎角度,支持R1~R20彎曲半徑設(shè)定,模擬實(shí)際裝配中的微小應(yīng)力,提前預(yù)警裂紋、斷裂風(fēng)險(xiǎn)。
參與評論
登錄后參與評論