高光譜遙感數據處理系列(二)
反射率與植被指數
來自地物反射/發射的光通過鏡頭被相機捕獲,使得傳感器被曝光。由于光電效應,傳感器上的每個像素傳感器上的電荷開始累計。經過相機芯片的轉換,這些光信號以數字的形式存儲下來,這些數字被稱為DN值。
輻射亮度 (Radiance),簡稱輻亮度 , 指面輻射源在單位立體角 、 單位時間內 , 在某一垂直于輻射方向單位面積 (法向面積) 上輻射出的輻射能量 , 即輻射源在單位投影面積上 、 單位立體角內的輻射通量 。輻亮度是最常用的度量光強弱的物理量之一。輻亮度可以進一步用于反射率的計算。
DN值可以看作由輻亮度與相機屬性主導的變量。去除DN值中由于相機屬性引起的變化,將其轉化為輻亮度的過程稱為輻射定標。通常該過程由相機廠商進行處理,或者廠商會提供用于定標的關鍵參數。
物體反射的輻射能量占總輻射能量的百分比,稱為反射率。不同物體的反射率也不同,這主要取決于物體本身的性質(表面狀況),以及入射電磁波的波長和入射角度,反射率的大小范圍總是小于等于1,利用反射率可以判斷物體的性質。
在使用無人機進行實際觀測時,通常使用地物輻亮度除以白板或反射布所在像元的輻亮度作為反射率。
從空間量化植被覆蓋、生物化學、結構和功能是研究和理解全 球變化、生物多樣性和農業的關鍵。實際上,遙感在很大程度上依賴于使用源自光譜反射率的植被指數 (Vegetation Indices, VI)。VI 是幾個波段反射率的數學變換,旨在最 大限度地提高對特定生物物理現象(例如,綠度、含水量或光合作用活動)的敏感性,同時最 大限度地降低對土壤特性、太陽光照、大氣條件和傳感器觀察等因素的敏感性。
典型植物的反射光譜。
植物光譜最顯著的特這就是紅光范圍的強吸收與近紅外區域的強反射,兩個波段之間的快速上升波段稱為紅邊。
紅光波段的強吸收是由于植被葉綠素的吸收,而近紅外波段的強反射是由于植被的葉片結構導致的。
通過兩個波段進行差分或比值可以凸顯出植被在這兩個波段的反射特性的差別。同時,差分或比值運算可以去除兩個波段中包含的背景信號及噪聲。
不同的波段或組合形式側重展現了不同的植被特性。植被指數是對地表植被狀況的簡單、有效和經驗的度量。目前已經出現了上百種不同的植被指數。ENVI中包含了其中7類 27種植被指數。
主界面功能區
在主界面⑤工具箱中搜索欄中可以方便地對所有工具進行檢索,輸入 Vegetaton Indices Parameters ,打開該工具如下所示:
鼠標單擊所需要的植被指數,然后點擊 Choose 選擇文件的存儲位置。此外ENVI還提供了將數據存儲到內存的選項 Memeory,但是這些數據在ENVI關閉后會被刪除。所以選擇存儲到內存時,ENVI會彈出二次確認對話框,繼續選中Memeory確認即可。
ENVI的幫助文件中詳細展示了各種植被指數的公式及參考文獻。在菜單欄 Help 中打開-> 在左側 Contents 選項卡中的Vegetation Analysis。關于植被指數的發展和使用場景還可以參考 Xue J, Su B. Significant remote sensing vegetation indices: A review of developments and applications[J]. Journal of sensors, 2017.
在獲取植被指數后,可以利用這些指數進行地表參數估算或者進一步進行實際應用,ENVI中提供了幾種植被指數的實際應用工具,包括林木健康分析(Forest Health Vegetation Analysis)、農作物脅迫(Agricultural Stress Vegetation Analysis)、易燃性分布分析(Fire Fuel Vegetation analysis),以及植被抑 制(Vegetation Suppression)。
這些應用工具結合幾類不同植被指數對植被進行評估,以林木健康分析為例,首先在主界面⑤中搜索欄中輸入 Forest Health Vegetation Analysis ,雙擊打開林木健康分析工具:
該工具通過三類不同的植被指數:綠度指數,葉色素指數,冠層水分或光能利用率指數。ENVI內置了模型進行閾值篩選,綜合分析多種指數,將植被的健康狀況分為9種。
波段運算
如果需要使用內置植被指數以外的指數進行運算,可以使用ENVI中的Band Math工具。這里分別對窄波段和寬波段植被指數的計算進行介紹。
窄波段歸一化植被指數:
首先在主界面⑤中搜索欄中輸入 Band Math,雙擊打開波段運算工具:
在Band Math中輸入所需要的表達式,這里需要注意的是,ENVI默認用b1,b2...來表示不同的變量,比如這里我們用到了兩個波段680nm和800nm,分別用變量b1和b2來表示。在Enter an expression中輸入(b2-b1)/(b2+b1),點擊ok,會彈出變量與實際使用波段的匹配對話框。
首先在①中單擊選擇需要賦值的變量,接下來在②中選擇所對應的波段(如果不同波段是分開存儲的,選擇Map Variable to Input File可以將整個文件賦給某個變量)。在有所變量選擇完畢后,點擊OK。結果如下圖所示:
寬波段NDVI:
通常機載成像光譜儀的光譜分辨率可以達到亞納米/納米級。而常用的衛星數據如Landsat系列和MODIS產品的光譜分辨率較寬,針對這些衛星遙感產品開發的植被指數基本都是寬波段植被指數。為了使用機載成像光譜儀進行寬波段植被指數的計算需要先對波段進行聚合,這里我們以Landsat系列的寬波段為例進行手動寬波段NDVI計算(Vegetaton Indices Parameters中也提供了一些寬波段VI的計算,這里另外介紹手動波段聚合的操作方法)。
Landsat 9 的傳感器如下所示:
Band 1 Visible (0.43 - 0.45 μm) 30-m.
Band 2 Visible (0.450 - 0.51 μm) 30-m.
Band 3 Visible (0.53 - 0.59 μm) 30-m.
Band 4 Red (0.64 - 0.67 μm) 30-m.
Band 5 Near-Infrared (0.85 - 0.88 μm) 30-m.
在⑤工具箱中搜索欄中Sum Data Parameters,打開波段聚合工具。
在①中選擇輸入文件,然后點擊 Spectral Subset ,在彈出的波段選擇窗格中,對要進行聚合的波段進行選取(按住Shift進行連續多選,按住Ctrl進行多選)。
點擊OK進行確認。
Sum Data Parameters 提供了多種波段聚合函數,這里選擇Mean函數進行聚合。依次對幾個波段進行聚合后的,我們得到以下文件。
接下來可以用Band Math進行寬波段NDVI的計算,計算方法同上。
小結
自遙感領域出現以來,植被指數扮演著重要的角色,并且一直在發展完善。本文介紹了反射率和植被指數的概念,植被指數的原理,使用ENVI進行植被指數計算,以及手動窄/寬波段植被指數的計算。了解其背后的植物生理學知識,是正確使用這些指數的必要條件。
參與評論
登錄后參與評論